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Water waves that propagate over a non-rigid bed are attenuated as a result of energy 
dissipation within the bed. This paper describes the analysis, from the basis of small- 
amplitude wave theory, of the coupled interaction between the bed, which responds in 
both an elastic and viscous manner, and an overlying layer of inviscid fluid. A dis- 
persion relation is derived, from which rates of wave attenuation and sea bed deflexions 
are calculated. 

The results are relevant wherever the sea bed, in its response to water waves, is 
non-rigid, as is often the case in coastal waters. Depending on the elasticity and vis- 
cosity of the sea bed, the wave attenuation can be of the same or of a larger order of 
magnitude than that due to bottom friction or percolation in a permeable bed. Where 
waves propagate over a soft viscous bed, for example as is the case a t  certain mud 
flats off the south-west coast of India, exceptionally high rates of attenuation are 
possible whereby waves are almost completely damped within several wavelengths. 

~ ~~~ ~ 

1. Introduction 
When waves are attenuated in coastal waters, the mechanism of energy dissipation 

generally involves some form of bottom interaction. Most theories of wave attenuation, 
such as that owing to bottom friction or to percolation in a permeable bed, are based 
on the assumption that the bed is rigid in its response to water waves. There is in- 
creasing evidence, however, that, as waves propagate over the sea bed, small deflexions 
can be induced in the sea bed itself. Bjerrum (1973) writes of North Sea waves causing 
sea-bed deflexions of up to 5 cm. Associated with such deflexions, there is inevitably 
some dissipation of wave energy due to internal friction within the sea bed. This 
mechanism may be a contributing factor in an explanation of wave attenuation over 
continental shelves and in coastal waters. Hasselmann et al. (1973) have made mea- 
surements of swell propagation and attenuation in the North Sea. They attempted 
to correlate observed rates of swell attenuation with the theory of attenuation due to 
bottom friction. However, a significant prediction of this theory, namely that there 
should be a strong modification of the swell decay rates by tidal currents, was not 
observed in the extensive swell data. It appears, therefore, that some other mecha- 
nism (or mechanisms) is involved. It is possible that the sea bed is not rigid and that 
the wave attenuation is caused by energy dissipation within the sea bed. 

Where the bed responds in both an elastic and viscous manner, the elastic response 
is in the form of a restoring force, i.e. restoring the bed to its undisturbed position, 
while the viscous response is in the form of a dissipative force (internal friction) which 
is the cause of the wave attenuation. The first theoretical investigation of this problem 
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was undertaken by Gade (1959) who studied the coupled interaction between a 
shallow layer of an inviscid fluid overlying an incompressible non-rigid bed of infinite 
depth. He derived a dispersion relation in the form of several simultaneous equations 
which he solved to yield the wave attenuation and the relative magnitude of the sea- 
bed displacement. I n  the present study the problem is analysed from the basis of 
small-amplitude wave theory such that a wider range of results are obtained for any 
depth of either the lower or upper layer. 

In  3 2 we discuss the Voigt model for the sea-bed material; this model conveniently 
combines the viscosity and elasticity of the bed. The linearized governing equations, 
which for the bed are almost identical to the linearized Navier-Stokes equations, and 
the boundary conditions are derived. In  S 3 we determine the dispersion relation for 
damped travelling waves. An explicit expression is derived for the wave attenuation 
and sea-bed displacement when this displacement is small relative to the surface wave 
amplitude. I n  $ 4  the dispersion relation is solved to yield exact numerical results 
for wave attenuation and for the relationships between the surface and interface 
profiles. The energy dissipation rates of the present theory are compared with dissi- 
pation rates due to other mechanisms such as those due to  bottom friction or per- 
coIation in a permeabIe bed. 

I n  $ 5  we explore the physical relevance of this study firstly to waves propagating 
over an almost rigid bed, as is often the case in coastal waters, and secondly to waves 
propagating over a soft viscous bed. In  the latter case, where the bed elasticity is 
negligible, we obtain results similar to those of Gade (1 958) and Dalrymple & Liu 
(1978). From these results it is shown that waves can be almost completely attenuated 
over a distance of several wavelengths. Such dramatic rates of wave attenuation have 
been observed a t  certain coastal localities, such as off the south-west coast of India, 
where the sea bed is a soft viscous mud (MacPherson & Kurup 1979). 

2. Formulation 
2.1. The viscoelastic model 

In  a non-rigid medium within which there is both an elastic and a viscous response 
t o  a small disturbance, we can refer to  the medium as viscoelastic. One of the simplest 
ways to combine the viscosity and elasticity in the medium is to use the Voigt model. 
The mechanical representation of this is a spring and dashpot in parallel so that, on 
loading, the deflexion of the system asymptotically approaches a constant value and 
when the load is removed the system steadily recovers. The spring is taken to obey 
Hooke’s law and the dashpot can be considered as a piston being drawn through a 
Newtonian fluid. I n  this paper we will use the Voigt model because, as shown below, 
the governing equations for the viscoelastic medium are almost identical to the govern- 
ing equations for a viscous fluid. 

The linearized equations of motion for a small disturbance of an incompressible, 
viscoelastic medium are (Kolsky 1963) 

a2x I a G _ -  a t 2  - - - V p + v - V ~ x - t -  at P v2x-g, 

where x are particle displacements, v is the kinematic viscosity, G the shear modulus 
of elasticity and g the vertical acceleration due to gravity. We can replace a2x/at2 
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FIGURE 1. Definition sketch. 
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by the velocities au/at and, if we assume that the disturbance varies sinusoidally in 
time such that x and u vary as exp ( -id),  we can replace a(VZx)/at by V2u and V2x 
by V2u/( -in) to obtain 

-- 

We can now introduce a viscoelastic parameter, v,, where 

such that v, is complex, the real part being the viscosity and the imaginary part 
being a measure of the elasticity. Thus the equations of motion for a viscoelastic 
medium have reduced to  the form of the linearized Navier-Stokes equations for a 
viscous fluid. As was shown by Tchen (1956), by using the Voigt model the study of 
waves in a viscoelastic medium parallels the study of waves in a viscous fluid. 

2.2. The governing equations 

We first present the linearized governing equations for small-amplitude water waves 
propagating over a viscoelastic bed of finite depth. We take the linearized form of 
these equations because, having made the assumption that the waves are of small 
amplitude, the velocities are small and their products can be neglected. In  two dimen- 
sions, Cartesian co-ordinates (2, y) are introduced such that the origin is a t  the un- 
disturbed interface between the two layers and y is positive upwards as shown in 
figure 1. Subscripts 1 and 2 refer to the upper and lower layers respectively. The 
elevation of the upper surface of the water is defined by y = h, + r,, where h, is the 
mean depth. The elevation of the interface, which is common to both layers, is defined 
by y = y2. It is assumed that there is no mixing a t  the interface and that the density 
of the lower layer, pz, is greater than the density of the upper layer, pl. 
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For the lower layer, the bed is modelled as an incompressible viscoelastic medium 
and, from equation (2.2), the equations of motion are 

( 2 . 4 ~ )  

(2.4b) 

where we tacitly drop the subscript 2 for the viscoelastic parameter ve, and the con- 
tinuity equation is 

Because the linearized Navier-Stokes equations allow for the velocities u2 and V, to 
be split into a potential part and a rotational part, we introduce (here we follow Lamb 
1932) a velocity potential 4, and a stream function $2 such that 

and 
v24, = 0,  

a$, V e v 2 $ 2  = - . 
at 

The pressure, p,, is determined solely from the potential part by the relationship 

(2.9) 
a42 

P2 = PZ at -P29Y* 

For the upper layer, the water is assumed to have negligible viscosity. We can, 
therefore, take the flow to be irrotational and can introduce a velocity potential #1 

such that 

The pressure, p l ,  is evaluated from 
a41 

P1= P l a t - P l S Y ’  

(2.10) 

(2.11) 

and the governing equation for the motion in the upper layer is 

v 2 + ,  = 0. (2.12) 

In seeking a solution to the governing equations (2.7), (2.8) and (2.12) we must satisfy 
the appropriate boundary conditions. 

2.3. Boundary conditions 

The linearized boundary conditions can be enumerated as follows: 
( 1 )  A t  the interface between the water and the non-rigid bed there must be con- 

tinuity of shear stress. Since we assume that no shear stress can be sustained by the 
water, then we must take the shear stress in the lower layer at  the interface to be zero. 

(2.13) This can be written 
pz~e(uzy+v2z)  = 0 on y = 0. 
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Using equation (2.6), the shear stress condition becomes 

-2$2zu--@,~u+ @2,x = 0 on Y = 0. (2.14) 

(2) The kinematic condition at the interface is the requirement that there is con- 
tinuity of normal velocity. In its linearized form, however, this condition requires 
only continuity of vertical velocity, i.e. such that the two layers always stay in 
contact, but allows for a discontinuity in the horizontal velocity. This discontinuity 
is acceptable because we have assumed that the water is acting as a perfect fluid. 
With yZ representing the profile at  the interface then the linearized kinematic condition 
is 

T~~ = v 2  = vl on y = 0. (2.15) 

In  terms of the velocity potential and stream function we have 

712t = - $ 2 y + $ 2 x  = -$1u on Y = 0. (2.16) 

(3) At the upper surface of the water we have the linearized kinematic condition 

71lt = v1= -41 a/ on y = h,. (2.17) 

We assume that the dynamic variations in pressure above the upper surface are 
negligible and therefore we take the pressure, pl, as given by equation (2.1 l ) ,  to be 
constant at  y = h, + 7;11. This pressure condition and the kinematic condition given by 
(2.17) can be combined to give the conventional free-surface boundary condition for 
irrotational water waves: 

4ltt +991u = 0 on Y = hl. (2.18) 

(4) The dynamic condition at  the interface requires that the normal stresses must 

that 

be balanced by the surface tension T .  Thus, we can write the boundary condition 

(2.19) 

Usingequations (2.11) and (2.9) to obtainp, andp, a t  y = q,respectively, thedynamic 
condition can be rewritten in its linearized form 

- P 2 $ 2 t + P 2 9 9 2 + 2 P 2 V e ~ 2 u + P l ~ l t - P 1 9 7 1 2  = T 9 2 z x  on Y = 0-  (2.20) 

(5) And the final condition, for a bed of finite depth at  y = - h,, is that we require 
the horizontal and vertical velocities to be zero a t  the rigid horizontal bed. In terms 
of the velocity potential and stream function for the lower layer the two boundary 
conditions can be written 

u2 = -$2s-$2u = 0 on y = - h  2, (2.21) 

V2 = -42u+@2x = 0 on y = -h2,  (2.22) 

If the sea bed is of infinite depth, then we would require that both $, and $, vanish 
as y-+ -a. 
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3. Solution for damped travelling waves 
3.1. Derivation of the dispersion relation 

We shall consider a profile at the interface between the water and the bed to be of the 
form 

(3.1) 

where it is understood that we take only the real part of the right-hand side. For 
progressive waves that decay with distance we take the radian frequency a as real 
and the complex wavenumber as 

so the real part of equation (3.1) can be written 

7, = a,exp [i(mz- d)], 

m = k+iD,  (3.2) 

(3.3) 

which is a progressive wave of amplitude a,exp ( - Dx), where a, is real and D is the 
decay parameter. The wavenumber k and radian frequency cr are common to both 
layers. 

We seek a solution to the governing equations and boundary conditions by choosing 
4,, $g and 

q, = a2e-Dx cos ( k x -  d) ,  

of the form 

i 
, - m  

g5 - - [A2 coshm(y + h,) + Cm sinh m(y + ha)] exp [i(mx - at)] ,  13-41 

$, = [C cosh l(y + h,) + A  sinh l(y + h,)] exp [i(mz - d)], (3.5) 

(3.6) 

where again we only take the real part of the right-hand side of these equations. 
Equations (3.4) and (3.5) already satisfy the boundary conditions at the rigid bed on 
y = -h2. Equations (2.7), (2 .8)  and (2.12) are satisfied when 

= ( E  cosh my + P sinhmy) exp [i(mx - d)],  

1 = (m2-ia/ve)*, (3.7) 

where without loss of generality we take 1 to be defined such that its real part is 
positive. 

The relationship between C and A is found by substituting (3.4) and (3.5) into the 
shear-stress boundary condition (2.14) : 

C 
A - 2m2 cosh mh, - (m2 + 12)  cosh lh, ' 

2ml sinh mh, - (m2 + 1,) sinh lh, _ -  

From equations (3.4) and (3.5) and the kinematic boundary condition (2.16) we 
obtain an expression for the interface profile of the form 

where 

B 
77, = - exp [i(mx - at)], 

B = C cosh lh, + A sinh lh,. 

22mve (3.9) 

(3.10) 

From (3.9) and (3.1) we find that 
a, = B/2.imve, (3.11) 
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which, we recall, is real. The relationship between F and B, from equations (3.4), 
(3.5) and (3.6) and the boundary condition (2.16), is 

(3.12) 

and the relationship between E and F is, from equation (3.6) and the free surface 
boundary condition (2.18), 

E 
F - - gm sinh mh, - a2 cosh mh, * 

gm cosh mh, - a2 sinh mh, _ -  (3.13) 

Thus we can now rewrite the velocity potential in the upper fluid, by substituting 
equations (3.12) and (3.13) into (3.6), in the form 

exp[i(mx-at)]. (3.14) I gm cosh (mh, -my) - g2 sinh (mh, -my) 
gm sinh mh, - a2 cosh mh, 

f$, = -- 

From equations (2.17) and (3.14) we find that the upper surface profile a t  y = h,+ 7, 
can be expressed in the form 

exp [ i (mx- d)]. (3.15) I B a 2  

% = me [ a 2  cosh mh, - gm sinh mh, 

The ratio of the interface profile, q2,  to the upper surface profile, r,, from (3.9) and 

72/71 = cosh mh, - (gm/a2) sinh mh,, (3.16) (3.15), is 

which corresponds to the ratio given by Lamb (1932) for two inviscid layers of different 
density. From equation (3.16) the amplitude ratio is 

a2/a1 = I cosh mh, - (gm/a2) sinh mh,( , (3.17) 

and the phase angle, 8, between the surface profile and the interface profile is 

8 = - arg (cosh mh, - (gm/a2) sinh mh,} (3.18) 

such that a positive value of 8 indicates that the surface profile lags behind the inter- 
face profile. The free-surface profile can now be expressed in the form 

ql = a, e-DX cos (kx - crt + 01, (3.19) 

where a, exp ( - Dx) is the modulus of equation (3.15). 

(2.20), we obtain an expression relating a and m which can be rearranged to yield 
Finally, substituting the necessary equations into the dynamic boundary condition 

p1(g4 - g2m2) tanh mh, 
gm tanh mh, - a2 

+ p2gm + Tm3 

( 2m2 - ia/v,) [ ZCm C, - mSm S,] - 2m21 
(2m2 - ia/v,) [lSmC, - mCmS,] 

+ p2(2m2v, - i ~ r ) ~  

where 

(2m2 - ia/ve) - 2m[mCmC, - ZSmS,] 
2m[lS,C, - mC,S,] ) = o ,  -4p2m3v~1 

C, = cosh mh,, 

S,,, = sinh mh,, 

C, = cosh Zh,, 
S, = sinh lhz. 

(3.20) 

(3.21) 
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This is the dispersion relation from which it is possible to  determine m, i.e. the wave- 
number k and the rate of decay D,  in terms of all physical parameters of the problem: 

I n  the limiting case when the upper fluid is absent, j.e. for a single layer of viscous 
fluid, we put h, or p, to  zero, replace v, by v and we recover the dispersion relation 
given by Wehausen & Laitone [1960, equation (25.36)]. Alternatively in the limiting 
case of two inviscid, inelastic layers, we let v, --f 0 in (3.20) and obtain the classical 
two-layer dispersion relation (Lamb 1932, p. 372). 

For the case of long waves, i.e. when the combined water and non-rigid bed depth 
is small in comparison t o  the wavelength, and when the parameter (m2v,/a) is small, 
it can be shown that equation (3.20) reduces to the biquadratic in m: 

a, h,, A,,, P1, Pz, T and v2. 

with 

and 

m4g2yh, h, I’ - mZa2g(h, + h, I’) + a4 = 0, 

Y = 1 - P2/PI 

tanh ( - ihg a/v,)* r = i -  
( - ihia/v,)t ’ 

(3.22) 

(3.23) 

(3.24) 

where we have tacitly dropped the surface tension T. For the case of a purely viscous 
bed, i.e. v, -+ v, then (3.22) and (3.24) reduce to  the results given by Gade (1958). 
For the case of a purely elastic bed, v, -+ iG /pzu ,  and thus (3.24) becomes 

(3.25) 

for which it can be shown that there is zero decay. Mallard & Dalrymple (1977) show 
that when waves propagate over a purely elastic bed as expected there is zero decay. 

For the case when the lower layer is of infinite depth we let h, --f co in (3.20) and, 
after some rearranging, we get 

&[ 1 - (?)‘I tanhmh, 
P2 

(5) tanh mh, - 1 

We can check the validity of this result for two cases when the upper fluid is absent; 
firstly for waves in a semi-infinit,e viscous medium we recover the result given by 
Wehausen & Laitone [1960, equation (25.17)], and secondly for waves in a semi- 
infinite elastic medium we recover the result given by Bromwich (1898). 

3.2. Explicit solution for an almost rigid bed 

Apart from unusual localities where the sea bed is a soft viscous mud, the oscillations 
of the sea bed due to the propagating waves will be, a t  most, small in comparison to 
the surface waves. In  such cases ofa  small response, we refer to the sea bed as ‘almost 
rigid’. The resistance of the bed to movement is in general due to relatively high 
values of either the bed viscosity or the bed elasticity. To obtain an explicit expression 
for the decay of waves over an almost rigid bed, we make an assumption about the 
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non-dimensional parameter (m2u,/u). This parameter, as i t  occurs in the dispersion 
relation, can be written 

im2ue/u = im2u/a - m2G/a2p2. (3.27) 

The first parameter on the right is a non-dimensional measure of the viscous response; 
the second is a non-dimensional measure of the elastic response. 

For an almost rigid bed where either the values of viscosity are high, m2u/g % 1 ,  
or the values of elasticity are high, m2G/p2a2 1, we can take the absolute magnitude 
of m2v,/ct t o  be large, i.e. Im2v,/al 3 1.  Taking the dispersion relation, equation (3.26), 
for the case when the lower layer is of infinite depth, we expand the square-root term 
in a series and rearrange, rejecting terms of order u/m2u,, to obtain 

(5) tanhmh, - v 
1 "  

(3.28) 

As a further assumption we take the wavelength to be long compared to  the water 
depth, as is often the case in coastal waters, and express tanh mh, in series form. We 
now non-dimensionalize by defining m* = rn(gh,))/a, U* = a(h,/g)g,p* = p1/p2 and 
u,* = ( u + i G / p 2 a )  (gh:)-*. Because v,* is complex, it is the modulus of u,* that we now 
take t o  be large. By expanding m* in (3.28) in powers of (vT)-l ,  

and equating terms 

t o  the first order in 
we obtain 

m* = 1 +mT(v:)-1+m;(v;)-2+ ... 

we find, after some work, that  

ip* 
4a*v: 

m * z  l+- 

(3.29) 

(3.30) 

u,*-l. I n  dimensional terms, and on replacing ue by (u+iG/p,a), 

U P1 gG iP1 gv 
2 2 +  kp, U(  u2 + Gz/pi a2) ' 

m z -  
(gh,)+ + 4pi a2(u2  + G2/p2 u ) 

(3.31) 

Now m = k + iD, so by equating the real parts we find that the wavenumber is given 
by the first two terms on the right, the second being only a small modification to the 
first, g/(gh,)*, which is the long-wave rigid-bed wavenumber. By equating the imagi- 
nary parts, the rate of decay is 

P1 gv 
4p2 ct( U 2  + G2/& c2) * 

DW (3.32) 

This provides a very convenient expression for predicting the attenuation of long 
waves that propagate over an almost rigid bed of infinite depth. 

The amplitude ratio a1/a2 for an almost rigid bed is obtained from the long wave 
equivalent of equation (3.17) whereby we replace sinhmh, by mh, and coshmh, by 
unity. On substituting equation (3.30) into this, we derive an expression for the 
amplitude ratio: 

(3.33) 

where we have neglected higher-order terms. 
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Given the amplitude of the surface wave, a,, this expression provides a convenient 
estimate of the relative displacement at the top of the sea bed. Similarly for the phase 
shift we find 

8 w tan-’ (p2vcr/G). (3.34) 

The assumption that underlies this analysis is that long waves, that is mh, < 1, are 
propagating over an almost rigid bed, that is Im2ve/ul 9 1. 

We now go on to examine the differing circumstances under which either viscous 
effects dominate or elastic effects dominate. 

Viscous effects dominant. When viscous effects dominate elastic effects, then 

and the decay, from (3 .32) ,  becomes 

(3 .35)  

The decay is inversely proportional to the viscosity and independent of the shear 
modulus of elasticity. From (3.331, the amplitude ratio becomes 

(3.36) 

It is interesting to note that, even when the elasticity of an almost rigid bed is zero, 
both (3 .35)  and (3 .36 )  are valid. This is not so for the reverse case as we shall now see. 

Elastic effects dominant. When elastic effects dominate viscous effects, then 

p2vvlG < 1,  

and the decay, from equation (3 .32) ,  becomes 

(3.37) 

showing that zero viscosity gives zero decay, which is what we would expect. The 
amplitude ratio is 

(3 .38)  

which is independent of the viscosity. Because the amplitude ratio is inversely pro- 
portional to the elasticity G, then with increasing elasticity we have decreasing 
amplitude ratio and thus the elastic forces are acting to restrain the motion of the 
bed. In this way we can understand how, with increasing elasticity, the decreasing 
bed movements result in decreasing attenuation, as shown by equation (3 .37) .  

3.3.  Energy dissipation 

The average rate that energy is dissipated in the non-rigid bed can be evaluated by 
several methods. Probably the simplest approach is to calculate the mean work done 
on the lower layer per unit area of the interface. The average rate of energy dissipa- 
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tion, P, is the average energy transmitted through the interface per unit area and 
time: 

(3.39) 

where the overbar denotes the time average and T is the wave period (277/v). Using 
equation (2.1 1), the linearized form is 

(3.40) 

The interface profile is given by equation (3.3), which on differentiating with respect 
t o  time yields 

9zt = a,c~e-Dxsin (kz-crt). (3.41) 

Because the interface 9, moves in simple harmonic motion whereby 9, and rzt are 
always out of phase by 477, the second part of the integrand in (3.40) has zero value: 

(3.42) 

To evaluate the first part of the integrand we require to  evaluate an expression for 
on y = 0. On differentiating equation (3.14) with respect to  time, we obtain 

exp [i (mx - d)]. (3.43) 1 gm cosh mh, - a2 sinh mh, 
gm sinh mh, - vz cosh mh, 

At this stage it is important to recall that we take only the real part of the right-hand 
side of this equation. Thus, utilizing equation (3.11) and substituting (3.41) and (3.43) 
into (3.40) and performing the integration, the average rate of energy dissipation is 
found to  be 

(3.44) I cr2(gm cosh mh, - cr2 sinh mh,) 
gm (gm sinh mh, - crz cosh mh,) ' 

p =  -- ~plg(a,e-D")2 v Im 

where m is obtained from the dispersion relation. 
To obtain an expression for an energy dissipation which is independent of x we 

define, following Dalrymple & Liu (1978), the local energy per unit area, E,  based on 
the local wave amplitudes, as 

E = +plg(a,,e-DS)2 + +(p2 -pl) g(a,e-Dx)2. (3.45) 

Then the relative energy dissipation per unit time is given by the ratio PIE  

4. Results 
4.1. Discussion of the roots 

In  the numerical solution of the dispersion relation equation (3.20), or if the non- 
rigid bed is of infinite depth (3.26), we evaluate the complex values of m which are 
the roots that  represent a system of progressive waves. (For standing waves, m would 
be real and CT complex, therefore we would solve for the complex values of v.) From 
the roots of the dispersion relation we can determine the basic character of the wave 
motion such as the rate of attenuation (from the imaginary part of m), the wave- 
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number (from the real part of m), the ratio of interface to surface wave amplitude and 
the phase angle between the interface and surface waves. For convenience we introduce 
the following non-dimensional parameters: 

(4.1) I k* = k(gh,)*/g, 

V* = V/(gh;)*, 

D* = D(gh,)*/g, 

G* = G/p2gh1, 
p* = (P/W (W)*, 

where P* is a non-dimensional form of the relative energy dissipation rate. Throughout 
the presentation of the results we take the surface tension to be negligible and we take 
the lower layer to be of infinite depth. In  figures 2 to 6 we plot results for a radian 
frequency u* = 0.5 and density ratio p* = 0.5. For a water depth of 10 metres, say, 
then this radian frequency corresponds to a wave period of around 12 seconds. The 
density ratio is based on a lower layer in situ density of 2.0 g which corres- 
ponds to a saturated sand with dry density 2.6 g ~ m - ~  and void ratio 0.6. 

To investigate physically reasonable solutions to the dispersion relation (3.26)) we 
will first discuss the special case where the bed elasticity is negligible (i.e. G -+ 0). If 
in addition viscous effects are neglected then equation (3.26) reduces to the classical 
dispersion relation for two inviscid layers of fluid of different density where two 
types of wave motion are possible (Lamb 1932). The first type of wave is identical 
to the ordinary surface wave which has a wavenumber m = a2/g; it is called an 
‘external’ wave, because the upper surface has the larger amplitude, and the surface 
and interface are in phase. The second type of wave, which has the larger amplitude 
at  the interface, is called an ‘internal’ wave and the surface and interface are of 
opposite phase. 

Returning to the dispersion relation (3.26) but with zero elasticity, along the lines 
of EJ 3.2 we can show that for small viscosity, i.e. u* 4 1, there are two possible solutions 
and that they are related to the external and internal waves of the inviscid problem. 
For example the small-viscosity solution with the external wavenumber is found to be 

yielding a decay 

u 2  4ivu5 
rnX--- -+- ,  

9 g3 

4uu5 D X - .  
g3 

(4.3) 

The small-viscosity solution that is related to the internal wavenumber yields a decay 
which though proportional to the viscosity is of a greater order of magnitude for 
physically realistic parameters. Because the decay (4.3) associated with external 
wavenumber m = u 2 / g  is smaller, it  is this solution which is of physical importance 
in that it describes waves that dissipate more slowly. 

An analysis for large viscosity u* 9 1, as has been done in 8 3.2 but with u, -+ u, 
yields the complex wavenumber 

the real part being the long-wave rigid-bed wavenumber and the imaginary part being 
the decay 

P19 D X -  
4p2 u v  . (4.5) 
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FIGURE 2. Viscoiis bad attenuation D* for different modes of oscillation with 
elasticity G* = 0, h, = m, u* = 0.5 and p* = 0.5. 

For this large-viscosity solution the decay is closely related to  the ‘creeping’ mode 
which, with the ‘viscous’ mode, is a solution to the problem of wave motion a t  the 
surface of a very viscous semi-infinite medium [Wehausen & Laitone 1960, equation 
(25.24)]. The ‘ creeping’ mode has a decay inversely proportional to  the viscosity 
while the ‘viscous’ mode has a more rapid decay which is inversely proportional to 
u t .  Both these modes represent aperiodic motions; i.e. the fluid slowly returns to its 
equilibrium state. When water waves are propagating over a viscous bed, however, 
a considerable proportion of the total energy is in the upper inviscid layer and there- 
fore the resulting wave motion will be periodic as given by (4.4). 

To illustrate this discussion of the roots we plot, in figure 2, with viscosity u* as 
abscissa and decay D* as ordinate, solutions to the dispersion relation (3.26) with 
G* = 0 that yield positive decay. We reject solutions with negative decay because a 
disturbance that grows in amplitude with distance is physically unacceptable. For 
the small-viscosity domain the two possible solutions are related to the ‘external’ 
and ‘internal’ wave motions discussed above; equation (4.3), which is plotted on 
figure 2, gives a good approximation to the slower decay. For the large-viscosity 
domain there are again two possible solutions which this time are related to the 
‘creeping’ and ‘viscous’ modes discussed above, i.e. proportional to v*-l as given 
approximately by equation (4.5) and to i~*-* respectively. Because we are primarily 
interested in the root that yields the longest-living wave, it is clear from figure 2 that 
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FIGURE 3. Viscoelastic bed attenuation I)* for different modes of oscillation with 
elasticity G* = 100, h, = co, g* = 0.5 and p* = 0.5. 

there is an apparent discontinuity a t  a viscosit,y of around v* = 2.0 between the 
appropriate root for the small- and for the large-viscosity domains. 

Where waves propagate over a bed that is viscoelastic, the types of solutions are 
similar to those discussed above for a purely viscous bed. For example we take the 
case of G* = 100 and plot the solutions to the dispersion relation equation (3.26) in 
figure 3. As for the case of a viscous bed, after rejecting roots that lead to a negative 
decay there are two possible solutions. In  the region where elastic effects dominate, 
i.e. p2uv/G < I ,  the two modes both yield a decay proportional to v*, the slower 
decay rate being given approximately by equation (3.37). Where viscous effects 
dominate, i.e. p2av/G $ 1, the two modes are proportional to v*-l and ,I*-&, the slower 
decay being represented approximately by equation (3.35). 

In  the next section, numerical results will be presented for a physically realistic 
range of the elasticity parameter G*. For clarity only results for the root that yields 
the slower decay will be plotted. 

4.2. Numerical results for viscoelastic bed 

I n  figures 4 to 6 we plot results for waves propagating over a non-rigid bed within 
which there is both a viscous and an elastic response. For a water depth of 10 metres, 
say, the viscosity values on the abscissa range from lo5 cm2s-1 to l O l 3  em2 s-l and 
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FIGURE 4. Waveattenuation D* plotted against viscosity v* for varying ela,sticity G*with h, = CO, 

(+* = 0.5 and p* = 0.5. The dashed extensions represent the root yielding more rapid attenuation. 

for the elasticity parameter, values range from 2 x 107 dyne cm-2 to 2 x 1 0l2 dyne cm-2. 
For larger values of either viscosity or elasticity, it will be shown that the bed has 
negligible effect on the waves. 

I n  figure 4 the wave attenuation D* is again plotted as ordinat'e with elasticity as 
parameter for the family of curves. With increasing values of the elasticity G*, the 
peaks in the attenuation are of a successively lower magnitude. The straight line to 
the right of the peaks is given by equation (3.35) and the lines to the left of the peaks 
are given by equation (3.37). When neither the viscous nor the elastic effects dominate 
(and from 0 3.2 we know that the balance between the two effects occurs when the 
parameter p2gv/G is of order unity) there is a local peak in the wave attenuation. 

I n  figure 5 we plot as ordinate the ratio of the interface to the surface amplitude, 
a2/a1. For negligible elasticity, i.e. when G* --f 0, there is a discontinuity in the ampli- 
tude ratio which corresponds to the intersection point between the small- and large- 
viscosity solutions discussed above. For the viscoelastic cases, with increasing elasticity 
there is a corresponding decrease in the maximum amplitude ratio showing that the 
elastic forces are restraining the motion of the bed. We can divide the figure into two 
zones; firstly where the viscous effects dominate, i.e. p2mj/G 9 1, the amplitude ratio 
is given approximately by equation (3.36) as plotted, secondly where elastic effects 
dominate, i.e. p2av/G 4 1, the amplitude ratio tends to the horizontal asymptotes 
given by equation (3.38). 
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p* = 0.5. The dashed extensions represent the root yielding more rapid attenuation. 
FIGURE 5 .  Ratio of int,erface amplitude to surface wave amplitude with h,  = XI, cr* = 0.5 and 

I n  figure 6 we plot the phase angle 0 between the surface profile and the interface 
profile. I n  the purely viscous case, i.e. when G* --f 0, for the small-viscosity solution 
0 < 0 < in, and for the large-viscosity solution n < 0 < in, with the discontinuity 
a t  the intersection point of the two solutions. For the viscoelastic cases when elastic 
effects dominate 0 z n, and when viscous effects dominate 0 M $ 7 ~ .  

It is appropriate a t  this point to comment on the numerical results of Gade (1959). 
He limits his numerical discussion to the case where elastic effects dominate; for 
example his results for wave attenuation are represented only by the lower left half of 
figure 4. He finds that the surface and interface profile are out of phase by n and for 
decreasing values of the elasticity parameter there is increasing decay and increasing 
amplitude ratio. I n  the present theory however it has been shown that these occur 
only where elastic effects dominate. Gade's paper does not show that viscous effects 
can dominate nor that the peak in the decay occurs when the viscous and elastic effects 
are balanced. 

4.3. Comparison of wave dissipation mechanisms 

I n  coastal waters, the dissipation of wave energy is usually the result of some form 
of bottom interaction. For most mechanisms of energy dissipation, such as those due 
to bottom friction, the formation of a laminar boundary layer or percolation in a 
permeable bed, it is assumed that the bed is rigid. I n  this section we compare the 
energy dissipation rates for these rigid-bed mechanisms with the rates for the non- 
rigid-bed mechanism of the present theory. 
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In  figure 7 we plot, with radian frequency g* as abscissa, wave energy dissipation 
rates P* for the following. 

(a )  A viscous bed with elasticity G* = 0 and viscosity v* = lo-' and density 
p" = 0.8 corresponding to soft mud. In  figure 7 we see that this case gives the most 
rapid wave damping with the energy dissipation P* M 0.05. 

( b )  A viscoelastic bed with the elasticity G* = 10, viscosity v* = 10 and p* = 0-5. 
For this case the peak in the energy dissipation is P* x 0.01. 

( c )  An almost rigid viscoelastic bed with an elasticity G* = lo2, v* = lo2 and 
p* = 0.5. Here the peak in the energy dissipation occurs a t  P* z 0.001. 

( d )  Bottom friction dissipation, 4, as given by Putnam & Johnson (1949), is 

4 fa ,  a3 -- pf - 
+plga:  37rg (sinh lch$ ' 

where f is the friction coefficient, which we take to be as used by most workers, 
and we take the ratio a,/h, = 0.15. In  figure 7, we see that the dimensionless dissi- 
pation Pj+ z 0.0006 for the lower frequencies, but gradually decreasing for increasing 
radian frequency. Clearly the rate of energy dissipation is very dependent on the 
choice off and aJh,. 
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FIGURE 7.  Comparison of wave energy dissipation mechanisms for the following: (a)  viscous bed 
G* = 0, v* = l O - l ,  h, = co, p* = 0.8;  ( b )  viscoelastic bed G* = 10, v* = 10, h, = a, p* = 0 . 5 ;  
( c )  viscoelastic bed G* = 100, v* = 100, h, = 00, p* = 0.5; ( d )  bottom friction with friction 
coefficient f = and the ratio aJh,  = 0.15; ( e )  laminar boundary layer; and (f) permeable 
bed with hydraulic conductivity K = 0.01 m s-l. 

( e )  Laminar boundary layer dissipation, Pb, as given by Ippen (1966), is 

g k 2 d  -- - P, 
+plga: (2a3)t cosh2kh,' (4.7) 

where v is the viscosity of water. The peak dissipation is around P$ M 0.0005. 

the bed is of infinite depth, is 
(f) Permeable bed dissipation, Pp, as given by Reid & Kajiura (1957), assuming 

where K is the hydraulic conductivity (coefficient of permeability), which for an average 
coarse sand is 0.01 m s-l. For t,his mechanism of dissipation we see that the peak is a t  
Pz % 0.0005. 
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Comparing the magnitude of the energy dissipation by the various mechanisms, we 
see from figure 7 that the viscous bed, curve (a ) ,  gives a peak energy dissipation that 
is considerably greater than the viscoelastic bed of curve (b) ,  which is more than one 
order of magnitude greater than either the viscoelastic bed of curve ( c )  or the other 
mechanisms of energy dissipation of curves (d ) ,  ( e )  and (f ). The rate of energy dissi- 
pation for a non-rigid bed is very dependent on the values of viscosity and elasticity 
within the bed. In the absence of adequate in situ measurements, in figure 7 we have 
used viscosity and elasticity values for which the rates of energy dissipation are of 
the same order of magnitude or greater than the energy dissipation rates when the 
bed is rigid. 

5. Discussion 
5.1. Waves over a n  almost rigid bed 

This investigation of wave attenuation may provide a clue to the explanation of swell 
decay rates as observed in the North Sea by Hasselmann et al. (1973). They found 
that the theory of wave attenuation due to bottom friction gave decay rates of the 
correct order of magnitude but that the theory was contradicted because there was 
no modification of the decay rates by the strong tidal currents. They concluded that: 
‘We have not been able to identify clearly the mechanism of swell attenuation’ 
(Hasselmann et al. p. 89). Because the strongest decay rate was observed close to the 
shore, they suspect that some form of bottom interaction is important. As we have 
shown above, the mechanism of attenuation due to a non-rigid bed (which yields 
decay rates that are independent of the tidal currents) can give, depending on the sea- 
bed elasticity and viscosity parameters, decay rates that are the same order of mag- 
nitude as those predicted by bottom friction and also as those observed in the North 
Sea. 

To illustrate this, we take a radian frequency of r P  = 0.5, a viscosity of v* = lo2 
and an elasticity of G* = lo2 because these parameters are known to yield wave 
attenuation rates of the same order of magnitude as bothom friction and percolation, 
see $4.3.  For a water depth of 10 metres, say, the radian frequency corresponds to a 
swell wave period of around 12 seconds, the viscosity parameter corresponds to a 
kinematic viscosity of los em2 s-1 and with p2 = 2.0 g the elasticity parameter 
corresponds to a shear modulus of elasticity of approximately 2.0 x 108 dynes 

From the numerical calculations, we find that the wavenumber k* = 1.045 (i.e. close 
to the rigid-bed long-wave wavenumber of unity) which corresponds to a wavelength 
of approximately 120 metres. The decay, from figure 4, is D* = 0.00084, which can 
be recalculated to give the dimensional decay D = 0*005/L. By our definition a wave 
decays with distance as exp ( - Dx) and so for this case the wave travels a distance of 
200 wavelengths before the wave amplitude is reduced to e-l = 0.37 of the original 
amplitude. 

The ratio of interface to surface wave amplitude is, from figure 5, .,/a, = 0.0037. 
Thus a surface wave amplitude of 1.5 metres, say, results in an amplitude at  the top 
of the bed of approximately 0-005 m. This gives a total deflexion (i.e. wave height) 
of around 1 cm, a figure not inconsistent with the sea-bed deflexions in the North Sea 
of up to 5 cm as reported by Bjerrum (1973), where possibly the wave heights were 
much larger. 

24-2 



740 H .  MacPherson 

5.2. Waves over a soft muddy bed 

Extraordinarily rapid wave damping has been observed at the mud flats off the 
south-west coast of India. The mud flats are characterized by an active phase during 
the stormy monsoon season when there is strong wave attenuation at the seaward 
edge and by a passive phase during the calmer non-monsoon months when the mud 
flats appear to have little effect on the waves. During the active phase each mud flat, 
or mud bank as they are called, is clearly marked by a semi-circular area of calm water 
stretching 5 to 7 km alongshore and extending 3 to 4 km offshore, outside of which 
there are rough monsoon seas. At the outer edge of the mud flat area, a t  a water depth 
of around lOto 12 metres, there is a peripheral zone within which the waves are almost 
completely attenuated over a distance of 4 to 8 wavelengths (MacPherson & Kurup 
1979). 

Observations of rapid decay rates have been made a t  other localities. Gade (1958) 
mentions a place called the Mud Hole on the Louisiana coast where the viscous bed 
has a pronounced calming effect on the sea in rough weather. On the west coast of 
Malaysia, Silvester (1 974, and personal communication) has observed ‘waves of 
around 4 seconds arriving in mud flats and in a matter of a few wavelengths are com- 
pletely attenuated’ (Silvester 1974, p. 196). 

The first theoretical analysis of such phenomena was undertaken by Gade (1958). 
Dalrymple & Liu (1978) have recently analysed this problem, namely of predicting 
the attenuation of waves propagating over a viscous bed. They use small-amplitude 
wave theory for studying the coupled interaction between the two layers, but where 
they differ from the present analysis is in their inclusion of viscous effects in the upper 
layer. This approach may be more complete mathematically, but it does not lead to  
the relatively simpler dispersion relation in the form of a single equation (3.20). 

Returning to the present theory we now discuss a numerical example of severe 
wave attenuation by taking a radian frequency (T* = 0.5, viscosity v* = 1.0 and 
elasticity G* = 0. For a water depth of 10 m, these parameters give a wave period of 
roughly 12 seconds, which is the dominant swell wave period during the monsoon 
months a t  the Indian mud flats, and a kinematic viscosity of 106 cm2 s-I (larger than 
might be expected from the exploratory experimental investigations of MacPherson & 
Kurup 1979). We take the lower layer to be of infinite depth and we take the lower- 
layer density to  be 1.25 g ~ m - ~ ,  i.e. a density ratio p* = 0.8, because measurements 
indicate that for soft muddy sea beds the in situ density can be as low as this (Mac- 
Pherson & Kurup 1978). 

From the numerical calculations we find that the wavenumber is k* = 0.462, which 
corresponds to a wavelength of 272 metres. The wavenumber is close to the afore- 
mentioned ‘external’ wavenumber of k = a2/g. The decay is found from figure 7 to 
be D* = 0.152, which can be rewritten as D = 2.1/L. Therefore the wave has to travel 
only 1.1 wavelengths before its amplitude is reduced to I0 yo of its original amplitude ! 

If we had taken the viscosity as v* = 3.0 (instead of v* = 1.0 as above), with all 
other parameters the same, we would get a wavenumber k* = 1.05 which is very 
close to the rigid-bed wavenumber obtained from r2 = kgtanhkh,. The decay is 
D* = 0.14 or D = 0.827/L, where the wavelength L is 120 m. Thus the wave traveIs 
2.8 wavelengths before its amplitude is reduced to 10 yo of its original amplitude. 
Comparing this result (where v* = 3.0) with the first result above (where v* = 1.0) 
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we have almost the same rate of attenuation with horizontal distance because in 
either case the wave has to travel around 300 m for the amplitude to decay to 10% 
of its original amplitude. 

For either case of this albeit extreme example, the predicted wave attenuation is 
more rapid than observed rates of wave attenuation a t  the mud flats off the south 
west coast of India where waves are said to almost completely ‘disappear’ over a 
distance of 4 to 8 wavelengths. 

5.3. Concluding remarks 

For water waves propagating over a viscoelastic bed, a dispersion relation in the form 
of a single equation has been derived. Physically reasonable solutions are discussed 
and numerical results for wave attenuation and the relationship between the interface 
and surface wave profiles are presented. The rate of attenuation is largely dependent 
on the magnitude of the viscosity and elasticity parameters in the bed. When the 
magnitudes of these parameters are within an intermediate range, the bed is almost 
rigid in response to wave action and yet significant rates of wave attenuation can be 
predicted. This mechanism may be a contributing factor in the attenuation of waves 
over continental shelves and in coastal waters. For the limiting case of an inelastic 
fluid bed, there are no elastic forces to restore the bed to its undisturbed position, and 
as a result large oscillations in the bed and extremely rapid rates of attenuation can 
occur. 

I wish to thank J. D. Fenton for his interest and encouragement in this work. 
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